DNA Replication : The Regulated Sliding Clamp
Schematic illustration showing how the clamp (with red and yellow subunits) is loaded onto DNA to serve as a tether for a moving DNA polymerase molecule. The structure of the clamp loader (dark green) resembles a screw nut, with its threads matching the grooves of double-stranded DNA. The loader binds to a free clamp molecule, forcing a gap in its ring of subunits so that this ring is able to slip around DNA. The clamp loader, thanks to its screw-nut structure, recognises the region of DNA that is double-stranded and latches onto it, tightening around the complex of a template strand with a freshly synthesized elongating (primer) strand. It carries the clamp along this double-stranded region until it encounters the 3ʹ end of the primer, at which point the loader hydrolyzes ATP and releases the clamp, allowing it to close around the DNA and bind to DNA polymerase. In the simplified reaction shown here, the clamp loader dissociates into solution once the clamp has been assembled. At a true replication fork, the clamp loader remains close to the polymerase so that, on the lagging strand, it is ready to assemble a new clamp at the start of each new Okazaki fragment
The two proteins shown are present in both bacteria and eukaryotic cells: MutS binds specifically to mismatched base pair, while MutL scans the nearby DNA for a nick. Once Must finds a nick, it triggers the degradation of the nicked strand all the way back through mismatch. Because nicks are largely confined to newly replicated strands in eukaryotes, replication errors are selectively removed. In bacteria, an additional protein in the complex (MutH) nicks unmethylated (and therefore newly replicated) GATC sequences, thereby beginning the process illustrated here. In eukaryotes, MutL contains a DNA nicking activity that aids in the removal of the damaged strands
0 komentar: